黄色大片在线看_色橹橹高清视频在线播放_日韩精品在线观看视频_丝袜美腿综合_国产精品毛片久久久久久久av _黄色激情网址_日本高清视频免费在线观看_国产成人在线视频播放_午夜国产福利_国产精品男女猛烈高潮激情

15601689581
當前位置:主頁 > 技術文章 > 用于等效時間采樣應用的空間多路單腔雙光梳激光器

用于等效時間采樣應用的空間多路單腔雙光梳激光器

更新時間:2022-05-24 點擊次數:3142

 

1.介紹


雙光學頻率梳(簡稱雙光梳)[1]的概念在光頻梳被提出后不久被引入[2-4]。在時域上,雙光梳可以理解為兩個相干光脈沖序列,它們的重復頻率有輕微的偏移。自問世以來,雙光梳光源及其應用一直一個重要研究課題[5]。雙光梳光源與早期用于泵浦探測測量的激光系統有許多相似之處。特別是,利用兩種不同重復頻率對超快現象進行采樣的想法,早在20世紀80年代就已經通過等效時間采樣概念的演示進行了探索[6,7]。在這種情況下,通過frep/ 的因子,超快動態過程在時域中被縮小到更慢的等效時間。這里frep是采樣頻率,是采樣頻率與激發重頻的差值。這個概念很快通過一對相互穩定的鎖模激光器實現,通常被稱為異步光采樣(ASOPS)[8]。雙光梳方法和ASOPS激光系統的一個顯著區別是兩個脈沖序列鎖在一起的相位和定時的精度。因為雙光梳鎖模的發明,特別是在一個自由運行的激光腔產生兩個光頻梳,這個邊界已經變得模糊。這種激光器最初是在光纖[9]和固態[10,11]增益材料中實現的,隨后出現了大量的激光腔多路復用方法[12]。由于脈沖在同一腔內循環,它們經歷類似的干擾,導致相關的噪聲特性,這對于實際應用[13]來說已經足夠了。類似地,與電子鎖定異步光采樣ASOPS系統相比,由于共腔結構和鎖模激光器振蕩器的優秀無源穩定性,有降低時間抖動的潛力[14,15]。此外,由于這些系統顯著降低了復雜性(一個振蕩器,沒有復雜的鎖定電子設備),它們可以在雙光梳激光器通常無法達到的新應用領域實現實際測量。另一方面,自由運行的激光器容易受到相對光學相位漂移和兩個脈沖序列之間重復頻率差異的影響,這必須加以考慮。

 

迄今為止,單腔雙頻梳激光器的運行通常是在激光設計或性能上的折衷。例如,將無源雙折射晶體插入腔中[10],用雙折射增益元件對偏腔線[16],分割激光增益帶寬[17],或利用環形腔的雙向運行[9,11]。最近,在高功率鎖模薄片激光器結構中也研究了涉及獨立腔端鏡的空間分離模概念[18,19]。然而,在這些新的實現中,并不是所有的內腔組件都是共享的以便降低常規噪聲抑制。

 

在這篇文章中,我們提出了一種激光腔多路復用的新方法,通過在表面插入一個具有兩個獨立角度的單片器件,例如雙棱鏡,使空間分離模式存在。因此,通過在適當的位置安裝雙棱鏡,可以將對單光頻梳操作*優的空腔適應為雙光頻梳空腔。利用這種方法,在80 MHz重復頻率,在脈沖小于140fs的情況下,我們從單個固體激光器腔中獲得了2.4 W的平均功率。兩個光頻梳的重復頻率差可在[- 450Hz, 600Hz]范圍內調節。表征得到脈沖之間的相對時序噪聲為僅為光周期的一小部分:在[20 Hz至100 kHz]的綜合帶寬下為2.2 fs。這是迄今為止報告的在這個頻率范圍內自由運行的雙梳激光器中zui 低的相對時間噪聲。此外,我們在多路復用元件上應用壓電反饋來抵消低頻環境干擾和漂移,因此我們可以在超過5小時內實現標準偏差為70的重復頻率差穩定性。

 

2.諧振腔設計與振蕩器性能


 

1.png

圖1所示。(a)激光腔布局。泵浦使用一個980nm多模二極管。DM:泵浦/激光二色性,OC:激光輸出耦合器, 5.5%的激光透過率,泵浦光高透過率。增益介質是摻雜4.5%的Yb:CaF2晶體 [20]。該腔采用具有介電介質頂部涂層的多量子阱SESAM,獲得高飽和通量Fsat=142?J/cm2,調制深度?R=1.1%。(b)激光輸出功率和脈沖持續時間隨總泵浦功率的變化。

 

圖1(a)顯示了我們的自由運行雙光頻梳激光腔的布局。我們使用多模泵浦二極管和端泵浦腔結構,類似于我們之前報道的偏振復用雙梳狀激光器的配置[20,21]。然而,與過去的報道相反,在有源元件,即增益晶體和半導體飽和吸收鏡(SESAM)上的空間分離是通過插入一個具有高度反射涂層的雙棱鏡來獲得的。通過使用一個頂角179°的雙棱鏡,我們獲得了在增益介質上模式分離1.6 mm和在SESAM上模式分離1 mm。圖1(b)顯示了掃描泵浦功率時單個光梳的性能。該孤子鎖模激光器的最大工作點對應2.4 W平均輸出功率,脈沖持續時間分別為138 fs(comb1)和132 fs(comb2),激光器的光對光效率為40%。

 

我們得到了兩個光頻梳的自啟動鎖模。在最高輸出功率下的激光輸出診斷如圖2(a-b)所示,這表示基模鎖定是很干凈的。壓電致動器可以在短時間內連續調節雙棱鏡的橫向位置,把其安裝在一個平移臺上,該平移臺可通過壓電致動器進行大范圍的任意步進調節。雙棱鏡的平移可以調整兩個光頻梳的重復頻率差,從-450 Hz到600 Hz,對激光輸出性能的影響可以忽略不計(圖2(c))。在較大的行程時,雙棱鏡頂點上的模削效應導致輸出功率的降低。

 

2.png

圖2所示。(a)用光譜分析儀(分辨率設置為0.08 nm)測量對數尺度下的激光輸出光譜。(b)用微波頻譜分析儀分析快速光電二極管產生的光電流的歸一化功率譜密度。插圖顯示放大的兩個射頻梳的一次諧波。(c)雙棱鏡側面不同位置的重復頻率差異。

 

3.噪聲特性


接下來,我們評估了共腔方法獲得兩個脈沖序列與低相對時間抖動有效性。首先,我們進行相位噪聲特性,試圖獲得每個單獨的脈沖序列的絕對時間抖動。我們在一個快速光電二極管(DSC30S, Discovery Semiconductors Inc.)上檢測每個脈沖序列,并選擇帶有可調諧帶通濾波器的第6個重復頻率諧波。該信號通過信號源分析儀(SSA) (E5052B, Keysight)進行分析。得到的相位噪聲功率譜密度(PSD)和綜合時間抖動如圖3所示。從測量中我們看到,每一個單獨的脈沖序列的絕對時間抖動非常小,相位噪聲PSD看起來幾乎相同。為了測量兩個脈沖序列之間的絕對時間抖動的相關性,我們開發了一種基于梳齒跳動的相對時間抖動測量技術,該技術使用了兩個單頻連續激光器[22]。這種相對時間抖動測量技術可以揭示任意重復頻率差下自由運行的雙梳激光的不相關噪聲。得到的不相關的相對時序抖動在圖3中用黑線表示。我們發現相對時間抖動平均比絕對時間抖動低25dB,這表明由于單腔結構,有很好的共相位噪聲抑制。集成的相對定時抖動為2.2 fs [20 Hz, 100 kHz]。這表明,即使在較長的數據采集時間內,也可以從自由運行的激光腔獲得亞周期相對定時抖動。

 

3.png

圖3所示。(a)使用信號分析儀測量每個脈沖序列的絕對(紅色和藍色)時序噪聲。使用[22]中描述的方法測量的兩個脈沖序列之間的相對時序抖動(黑色)。(b)時序噪聲曲線積分得到的時序抖動。

 

我們開發了這種激光器用于等效時間采樣應用,如泵浦探測光譜和皮秒超聲[20]。因此,我們還沒有詳細研究該光源如何適用于需要長期相對光學相位穩定性的高分辨率雙梳光譜。在50毫秒的采集周期內,可以觀測到一些射頻梳齒結構。然而,精確的雙光梳光譜學應用仍然依賴于用一個或多個連續波激光器跟蹤光學相位波動,例如通過自適應采樣方法,如[23]中的展示。從圖3可以觀察到,在700 Hz和1600 Hz附近有幾個噪聲峰值,這可能是由機械共振引起的,因此可以通過仔細的光學機械優化來消除。然而,這些共振降低了兩個脈沖序列之間的相位相干性。由于較大的光帶寬和相對較低的80 MHz的重頻,混疊條件要求在500 Hz以下的重頻差范圍內使用。在這樣的低頻率下,機械噪聲比如來自上述諧振,將影響相互相位相干性。更適合自由運轉雙光梳光譜的結構包括更高的重頻和重頻差異,如[13,22],在此機制中提出的技術探索將是未來工作的主題。在這篇文章中,我們著重于將這種新光源應用于泵浦探測光譜的應用,在這里,激光的峰值功率可以用來直接激發非線性過程。80MHz的重頻可以實現12.5 ns的大延遲掃描范圍,超低的相對定時抖動可以用于精確的時間軸校準。

 

激光相對強度噪聲(RIN)是任何快速采樣應用的關鍵參數之一。我們在以下高動態范圍測量配置中分析了我們的激光器的RIN。我們使用一個光電二極管,每個光頻梳的平均梳齒功率同時設定為10mW。為了獲得RIN光譜,我們使用SSA進行基帶測量。首先,我們用一個低噪聲跨阻抗放大器(DLPCA-200, Femto)測量低頻分量(<200 kHz)。為了測量更高頻率的分量,我們用一個偏置TEE (BT45R, SHF通信技術AG)分割信號的交流和直流部分。交流部分用低噪聲電壓放大器(DUPVA-1-70, Femto)放大。將兩個測量值拼接在一起,得到每個光頻梳的完整RIN譜,如圖4所示。我們發現每個光梳的綜合RIN值< 3.1х10-5 [1 Hz, 1 MHz]。

 

4.png

圖4所示各光梳的相對強度噪聲譜。根據光電二極管的規格和測量的輸入功率計算散粒噪聲極限。

 

4.等效時間采樣應用


為了使激光器應用于泵浦探測光譜應用,我們將它與一個光參量振蕩器(OPO)的一個輸出光束耦合。OPO能夠實現波長的多色泵浦探測測量。此外,由于OPO是同步泵浦,兩個脈沖序列之間的相對時間保持不變。我們用ppln晶體(HC Photonics)設計了一個信號諧振在1600nm的OPO。用2 W輸出的comb1泵浦可獲得876 mW的信號光。同時,我們還產生了OPO信號的二次諧波,以獲得800 nm的光,測量脈沖周期為151 fs,平均功率為390 mW。從振蕩器輸出的comb2可輕松倍頻獲得526 nm的光,使該激光源成為各種波長下理想的光譜學工具。

 

為了在環境發生變化時也能獲得重頻差的長期穩定性,我們實現了一個慢反饋閉環。comb1和comb2的部分功率發送到基于BBO的光學互相關器。我們使用一個頻率計數器,通過計算互相關信號之間的時間來跟蹤重頻差的波動,類似于[20,21]中使用的方法。為此,我們使用了一個定制的FPGA模塊,該模塊能以100Hz或更高的采集速率下獲取comb1和comb2的重頻差,精度優于10-6。記錄的重頻差信號在計算機上處理,通過調節施加到壓電致動器上的電壓來對復用元件進行校正。電壓信號以大約?frep的速率更新。

為了驗證兩組多色脈沖序列的相對長期穩定性,我們用另一種光學互相關裝置測量重頻差,如圖5(a)所示。我們將OPO倍頻輸出(800 nm,comb1)與直接激光輸出(1052 nm,comb2)相互關聯。在超過5小時的時間窗口中,我們發現重頻差波動標準差為70,如圖5(b)所示。

 

5.png

圖5所示。(a)帶兩個光學交叉相關器(XCORR)的多色等效時間采樣裝置。XCORR 1用于向激光提供慢反饋,XCORR 2用于執行環外測量。(b)使用XCORR 2的長期重頻差穩定性。設置為300Hz。

 

5.結論


我們展示了一種新穎的激光腔復用方法,該方法允許在同一振蕩器中存在兩個空間分離的準共徑腔模式。我們可以實現同步的模式鎖定,每路輸出脈寬少于140 fs,平均功率超過2.4 W。我們還描述了綜合帶寬20 Hz到100 kHz范圍內的相對定時抖動在亞周期范圍內。我們進一步將這種強大的固態激光器與OPO耦合,以獲得泵浦探測采樣應用的多色光輸出配置。為了消除任何可能改變重復頻率差的緩慢環境漂移,我們在雙棱鏡位置上實現了一個基于緩慢交叉校正的反饋環路,使我們獲得了長期性能良好的雙光梳。因此,我們的系統結合了這兩種方法的優點:共腔雙光梳激光器的高被動穩定性和簡單性,以及對鎖定激光系統漂移的免疫性。我們的結果證明了新的激光腔多路復用方法的實用性,并顯示其在泵浦探測和等效時間采樣應用中的巨大潛力。

 

關于生產商K2Photonics:

 

1650959184767710.png

K2Photonics是瑞士蘇黎士聯邦理工學院量子電子學研究所旗下公司旗下衍生公司。其把新的基于單腔雙光梳激光器研究的新成果進行商業化,為泵浦探測和異步光采樣ASOPS等應用客戶提供理想光源。上海昊量光電作為K2Photonics的中國代理,為您提供專業的選型以及技術服務。對于單腔雙光梳激光器有興趣或者任何問題,都歡迎通過電話、電子郵件或者微信與我們聯系。

 

關于昊量光電:

昊量光電  您的光電超市!

上海昊量光電設備有限公司致力于引進guo 外先 jin性與創新性的光電技術與可靠產品!與來自美國、歐洲、日本等眾多zhi 名光電產品制造商建立了緊密的合作關系。代理品牌均處于相關領域的發展前沿,產品包括各類激光器、光電調制器、光學測量設備、精密光學元件等,所涉足的領域涵蓋了材料加工、光通訊、生物醫療、科學研究、國防及前沿的細分市場比如為量子光學、生物顯微、物聯傳感、精密加工、先進激光制造等。

我們的技術支持團隊可以為國內前沿科研與工業領域提供完整的設備安裝,培訓,硬件開發,軟件開發,系統集成等優質服務,助力中國智造與中國創造! 為客戶提供適合的產品和提供完善的服務是我們始終秉承的理念!

 

(本文譯自Spatially multiplexed single-cavity dual-comb laser for equivalent time sampling applications(J. Pupeikis,1,* B. Willenberg,1,* S. L. Camenzind,1 A. Benayad,2 P. Camy,2 C. R. Phillips,1,* And U. Keller1    

1 Department of Physics, Institute for Quantum Electronics, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland 2 Centre de Recherche sur Les Ions, Les Matériaux et La Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen Normandie, 6 Boulevard Du Maréchal Juin, 14050, Caen Cedex 4, France)

 

參考文獻

1.S. Schiller, "Spectrometry with frequency combs," Opt. Lett. 27, 766–768 (2002).

2.H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phasecontrol: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69,327–332 (1999).

3.D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-EnvelopePhase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis," Science 288, 635–639(2000).

4.A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz,"Controlling the Phase Evolution of Few-Cycle Light Pulses," Phys. Rev. Lett. 85, 740–743 (2000).

5.I. Coddington, N. Newbury, and W. Swann, "Dual-comb spectroscopy," Optica 3, 414 (2016).

6.K. J. Weingarten, M. J. W. Rodwell, H. K. Heinrich, B. H. Kolner, and D. M. Bloom, "Direct electro-opticsampling of GaAs integrated circuits," Electron. Lett. 21, 765 (1985).

7.K. J. Weingarten, M. J. W. Rodwel, and D. M. Bloom, "Picosecond optical sampling of GaAs integrated circuits,"IEEE J. Quantum Electron. 24, 198–220 (1988).

8.P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, "Pump/probe method for fastanalysis of visible spectral signatures utilizing asynchronous optical sampling," Appl. Opt. 26, 4303 (1987).

9.K. Kieu and M. Mansuripur, "All-fiber bidirectional passively mode-locked ring laser," Opt. Lett. 33, 64–66(2008).

10.S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, "Dual-combmodelocked laser," Opt. Express 23, 5521–5531 (2015).

11.T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, "Kerr-lens mode-locked bidirectional dual-comb ring laserfor broadband dual-comb spectroscopy," Optica 3, 748 (2016).

12.R. Liao, H. Tian, W. Liu, R. Li, Y. Song, and M. Hu, "Dual-comb generation from a single laser source: principlesand spectroscopic applications towards mid-IR—A review," J. Phys. Photonics 2, 042006 (2020).

13.S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, "Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser," Science (2017).

14.S. Schilt, N. Bucalovic, V. Dolgovskiy, C. Schori, M. C. Stumpf, G. Di Domenico, S. Pekarek, A. E. H. Oehler, T.Südmeyer, U. Keller, and P. Thomann, "Fully stabilized optical frequency comb with sub-radian CEO phase noise from aSESAM-modelocked 15-μm solid-state laser," Opt. Express 19, 24171 (2011).

15.T. D. Shoji, W. Xie, K. L. Silverman, A. Feldman, T. Harvey, R. P. Mirin, and T. R. Schibli, "Ultra-low-noisemonolithic mode-locked solid-state laser," Optica 3, 995 (2016).

16.M. Kowalczyk, ?. Sterczewski, X. Zhang, V. Petrov, Z. Wang, and J. Sotor, "Dual‐Comb Femtosecond Solid‐StateLaser with Inherent Polarization‐Multiplexing," Laser Photonics Rev. 15, 2000441 (2021).

17.X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, "Picometer-resolution dual-combspectroscopy with a free-running fiber laser," Opt. Express 24, 21833–21845 (2016).

 

 

昊量微信在線客服

昊量微信在線客服

版權所有 © 2025上海昊量光電設備有限公司 備案號:滬ICP備08102787號-3 技術支持:化工儀器網 管理登陸 Sitemap.xml

亚洲欧美国产高清va在线播| 国产精品视频一区二区三区不卡| 天天干天天爽天天射| 色婷婷综合网| 夜夜春亚洲嫩草影视日日摸夜夜添夜| 午夜激情视频在线| 日韩av在线一区二区| 性感美女一级片| 亚洲永久免费视频| 国产在线观看第一页| 成人av在线观| 美女网站视频色| 青娱乐精品视频| 在线免费黄色网| 久久视频在线| 北条麻妃在线一区| 久久五月天小说| 中文字幕成人在线视频| 日韩激情免费| 国产免费人做人爱午夜视频| 青青视频一区二区| 男人日女人视频网站| 精品亚洲自拍| 欧美激情 国产精品| 欧美久久精品一级c片| 女性隐私黄www网站视频| 午夜精品视频一区二区三区在线看| 日韩国产一级片| 亚洲激情欧美| 日本激情视频在线播放| 久久久久久美女精品| 在线观看免费视频高清游戏推荐| 国产成人黄色| 三级在线免费看| 亚洲成av人片乱码色午夜| 日韩av在线中文| 99在线精品视频在线观看| 9.1成人看片免费版| 蜜桃av一区二区在线观看| 日韩黄色中文字幕| av亚洲精华国产精华| 国产一级久久久| 国产拍揄自揄精品视频麻豆| 中文文字幕一区二区三三| 一区二区视频在线看| 亚洲欧美色视频| 精品久久免费看| 成年在线播放小视频| 久久夜精品香蕉| 一级片在线播放| 奇门遁甲1982国语版免费观看高清 | 欧美日韩精品中文字幕一区二区| 3d欧美精品动漫xxxx无尽| 亚洲精品二区| 日韩精品第一区| 久久福利小视频| 国产成人在线观看| 波多野结衣不卡| 在线视频一区二区三区| 国产黄色免费| 欧美国产中文字幕| а√资源新版在线天堂| 中文字幕日韩一区二区三区不卡| 国产精品观看| 一级片中文字幕| 欧美军同video69gay| 超碰96在线| 老司机精品福利在线观看| 91一区二区三区四区| 美女福利视频在线观看| 欧美一区二区三区在线观看视频 | 国产精品扒开腿爽爽爽视频| 成人在线视频区| av av在线| 亚洲午夜精品久久久久久久久| av电影在线网站| 亚洲va久久久噜噜噜| 天天天综合网| 欧美 亚洲 另类 激情 另类| 最近2019中文字幕mv免费看| 成人av色网站| 国产在线综合视频| 欧美精品久久久久久久久老牛影院| 国产在线电影| 亚洲一区二区蜜桃| 国产精品毛片久久久久久| 成人福利网址| 国产高清精品软男同| 成人精品鲁一区一区二区| 夜夜狂射影院| 欧美精品二区三区四区免费看视频| 亚洲欧美日韩精品一区二区 | 高潮毛片又色又爽免费| 一区二区三区四区视频| 视频一区中文字幕精品| 香蕉视频一区二区| 一个色综合导航| 激情小说亚洲图片| 成人免费看片98欧美| 久久精品电影网站| 综合国产视频| www.久久伊人| 国产在线久久久| 香蕉成人久久| 色视频线观看在线播放| 亚洲国产婷婷香蕉久久久久久99| eeuss影院一区二区三区 | 欧美变态网站| 国产一区二区视频免费| 清纯唯美亚洲综合| 亚洲日本黄色| 国产精品久久久久久久久鸭| 日本免费高清一区二区| 久久综合久久综合九色| 你懂的免费在线观看视频网站| 欧美日韩理论片| 精品精品国产高清一毛片一天堂| 国产电影一区| www.com欧美| 免费成人看片网址| 亚洲国产激情av| 亚洲搞黄视频| 在线免费日韩av| 91精品国产成人www| 国产一区二区三区的电影| 黄色网址免费看| 亚洲综合婷婷久久| 精品久久久久久久久久久久包黑料| 日韩精品免费一区二区夜夜嗨| 免费观看a视频| 日本精品免费视频| 91官网在线免费观看| 亚洲精品一区二区三区中文字幕| 免费国产精品视频| 一区二区三区四区欧美| 色综合一区二区| 欧亚精品一区| 国产性网软件大全| 中文字幕视频在线免费观看| 亚洲成年网站在线观看| 91精品一区二区三区综合在线爱| 一个人在线观看免费视频www| 成人午夜视频免费在线观看| 日韩av在线免费播放| 黄色成人av网站| 最美情侣韩剧在线播放| 一级免费黄色录像| 国产欧美一区二区三区四区| 中文字幕av一区二区三区| 澳门成人av网| 好男人官网在线观看| 黄色片视频在线免费观看| 国产视频久久久| 美国十次了思思久久精品导航| 国产一区二区影视| 中文字幕日本人妻久久久免费 | 国产99久久久国产精品免费看| 午夜小视频在线| 影音先锋国产资源| 91精品国产毛片武则天| 亚洲视频一区二区| 国内不卡的二区三区中文字幕| 欧洲黄色一区| 天天操天天干天天| 三级av免费看| 日本精品中文字幕| 亚洲国产婷婷综合在线精品| 精品一区免费| 黄页网站免费在线观看| 国内免费精品视频| 黄色录像特级片| 伊是香蕉大人久久| 91麻豆免费观看| 精品国产乱子伦一区二区| a天堂在线观看| www.av视频在线观看| 色播五月综合| 精品偷拍各种wc美女嘘嘘| 国产成人亚洲综合色影视| 日本综合久久| 成片免费观看| 免费在线看黄网址| 激情小视频网站| 欧美成人三级视频网站| 亚洲女同ⅹxx女同tv| 一区二区三区四区在线观看国产日韩 | 国产av精国产传媒| 欧洲熟妇精品视频| 国产成人拍精品视频午夜网站 | 亚洲成av人片乱码色午夜| av在线免费观看网站| 亚洲天堂在线播放| 国产精品免费无码| 在线观看成人免费| 98视频在线噜噜噜国产| 狠狠躁夜夜躁人人爽天天天天97| 老妇喷水一区二区三区| 国产精品亚洲一区二区在线观看| 特黄特黄的视频| 日本xxxxxwwwww| 先锋影音av在线| 日韩中字在线观看| 成人国产在线视频| 精品一区二区三区三区| 亚洲欧美日韩电影| 久久三级视频| 一区视频网站| 日本暖暖在线视频| 美女被黑人40厘米进入| 中文字幕第三页| 国产特级黄色录像| 91.com在线| 99国产精品久久久久老师| 亚洲欧美制服中文字幕| 精品福利樱桃av导航| 国产老妇另类xxxxx| 999国产精品视频| 成人不卡视频| jizz在线观看中文| t66y最新发布地址| 天堂在线视频免费观看| 欧美激情精品久久| 日韩高清在线一区二区| 国产av第一区| 999日本视频| 久久久视频在线| 亚洲国产精品久久久久久| 香港成人在线视频| 99久久精品一区二区| 亚洲三级视频| 不卡在线一区| 97视频一区| 国精产品一区二区三区有限公司| 嫩草在线播放| 美女视频黄a视频全免费观看| 日韩一本大道| 成人黄色免费视频| 国产精品男女视频| 国产成人免费在线观看视频| 奇米777在线| 成年人免费在线播放| 亚洲一卡二卡三卡| 精品国产免费一区二区三区 | 又大又黄又粗| 男人通一通女人的下水道| 国产又粗又猛视频免费| 日本va欧美va国产激情| 欧美老熟妇一区二区三区| 亚洲综合网在线观看| 亚洲妇女无套内射精| 日韩肉感妇bbwbbwbbw| 国产女大学生av| 天天做天天爱天天高潮| 亚洲精品久久久久久一区二区| 国产98在线|日韩| 92看片淫黄大片看国产片| 国产精品久久久久久久天堂| 日韩美女毛片| 国产欧美亚洲一区| 亚洲第一色在线| 手机精品视频在线| 国产美女玉足交| 激情欧美一区二区| 91观看网站| 亚洲美女综合网| 一道本一区二区三区| 亚洲最大在线视频| 萌白酱视频在线| 麻豆网站免费在线观看| 色综合久久综合中文综合网| 性欧美1819| 免费在线一级视频| 国产精品萝li| 国产美女永久无遮挡| 成人免费看黄网址| 成人免费视频一区| 日韩中文字幕一区二区| 欧美国产中文| 日本亚洲天堂网| 91精品入口蜜桃| 中文字幕久热精品视频免费| 亚洲免费激情| 成人精品久久一区二区三区| 亚洲免费视频网| 精品在线观看一区二区| 1069男同网址| 欧美日韩激情一区二区| 一级黄色在线视频| 日本亚洲三级在线| 日韩欧美在线播放视频| 国产精品av一区二区三区| 久久6精品影院| seba5欧美综合另类| 亚洲制服丝袜一区| 久久成人在线观看| 新67194成人永久网站| 日日摸日日碰夜夜爽无码| 伊人久久精品一区二区三区| 午夜精品福利视频| jizz老师| 欧美日韩亚州综合| 都市激情久久| 亚洲欧美中文字幕在线一区| aaa人片在线| 欧美日韩激情在线一区二区三区| 97精品久久久| 蜜桃视频污在线观看| 久久精品成人| 欧美连裤袜在线视频| 99热手机在线观看| 亚洲国产精品高清| 中文字幕成人在线视频| 色呦呦呦在线观看| 精品国产一区二区国模嫣然| 免费在线看黄网址| 欧美精选视频在线观看| 国产精品入口夜色视频大尺度| 四虎永久免费影库二三区| 九九久久精品视频| 中文字幕在线观看一区二区三区| 亚洲精选av在线| 亚洲成人在线免费| 亚洲第一黄色网址| 国产精品99久久免费| 欧美激情国产精品| 五月天婷婷在线播放| 男男成人高潮片免费网站| 亚洲免费在线精品一区| 超碰在线电影| 色婷婷综合久久久中文字幕| 日韩欧美视频免费观看| 男人的天堂久久| 国产成人在线亚洲欧美| 国产精品jvid在线观看| 国产日韩综合av| 亚洲自拍第三页| 国产精品无码久久久久| 欧美人在线观看| 香蕉久久视频| 91麻豆免费看| 亚洲制服在线观看| av在线播放一区| 久久久亚洲精品视频| 久草免费资源| 久久久精品一品道一区| 亚洲高清在线不卡| 欧美爱爱视频| 欧美一区二区三区喷汁尤物| 欧美一级黄色录像| 伊人成色综合网| 国产丝袜在线播放| 中文字幕亚洲无线码a| 免费成人在线看| 成人一道本在线| 国产无遮挡猛进猛出免费软件| 超碰这里只有精品| 2019精品视频| 国产精品自拍亚洲| 亚洲日本中文字幕区| 自拍偷拍视频亚洲| 欧美久久精品一级c片| 国产伦精品一区二区三区| 老司机色在线视频| 欧美精品日韩一区| 中文字幕日韩三级| 国内精品视频666| 五月婷婷激情久久| 91精品国产自产观看在线| 日韩免费在线观看视频| 天天摸天天干| 欧美在线999| 夜夜爽妓女8888视频免费观看| 日本vs亚洲vs韩国一区三区 | 18禁裸乳无遮挡啪啪无码免费| 国产伦理久久久久久妇女| 7777精品久久久大香线蕉小说| 诱受h嗯啊巨肉高潮| 日韩精品一区二区三区四区| 亚洲综合精品在线| 国产丶欧美丶日本不卡视频| 欧美熟妇另类久久久久久多毛| 大奶在线精品| 久久久一本精品99久久精品66| 日韩黄色影院| 九色91av视频| av福利网址网站| 欧美精品久久99| 蜜臀av中文字幕| 中文字幕欧美一| 久久黄色免费网站| 蜜桃久久av一区| 波多野结衣网页| 日本不卡免费一区| 青青视频免费在线| 欧美爱爱视频| 好吊色欧美一区二区三区| 超碰在线无需免费| 538国产精品一区二区免费视频 | 欧美一二三不卡| 国产69精品久久久久9999人|